전체 글 287

AGENTGYM: Evolving Large Language Model-basedAgents across Diverse Environments 논문리뷰

https://arxiv.org/pdf/2406.04151가장 중요한것1) diverse environments for agent exploration and learning 에이전트의 탐색과 학습을 위한 다양한 환경 2) a trajectory set to equip agents with basic capabilities and prior knowledge에이전트에게 기본적인 능력과 사전 지식을 갖추게 하는 trajectory 집합3) an effective and scalable evolution method효과적이고 확장 가능한 진화 방법

agent/multi - agent 2024.08.08

Scaling LLM Test-Time Compute Optimally canbe More Effective than Scaling Model Parameters 논문리뷰

https://arxiv.org/abs/2408.03314(1) searching against dense, process-based verifier reward models; and(2) updating the model’s distribution over a response adaptively, given the prompt at test time. We find that in both cases, the effectiveness of different approaches to scaling test-time compute critically varies depending on the difficulty of the prompt모델 크기를 키우는 것과 test-time에 추가 계산을 수행하는 것 중 ..

카테고리 없음 2024.08.08

ToRA ( A TOOL-INTEGRATED REASONING AGENTFOR MATHEMATICAL PROBLEM SOLVING) 논문리뷰

https://openreview.net/pdf?id=Ep0TtjVoapa 는 CoT, b는 PAL ,c는 ToRA의 tool(PAL)을 통합한 rationale(CoT)을 활용imitation learningGPT4 같은 모델을 써서 만든 ToRA corpus로 모델 M 학습진행 output space shaping 모델 M의 ToRA를 샘플링 후 이를 teacher model에 evaluate, validate 후 수정된 trajectory 를 corpus로 사용

agentscope 논문리뷰 (A Flexible yet Robust Multi-Agent Platform)

가장 중요한점https://arxiv.org/pdf/2402.14034https://github.com/modelscope/agentscope GitHub - modelscope/agentscope: Start building LLM-empowered multi-agent applications in an easier way.Start building LLM-empowered multi-agent applications in an easier way. - modelscope/agentscopegithub.com following aspects feature the challenge1) Agents involved in a multi-agent application can specialize at diff..

agent/multi - agent 2024.08.07

GPTSwarm 논문리뷰 (Language Agents as Optimizable Graph)

https://arxiv.org/pdf/2402.16823노드는 오퍼레이션(LLM , tool 사용)edge는 에이젼트간의 커뮤니케이션+ The nodes implement functions to process multimodal data or query LLMs, and the edges describe the information flow between operations 2. GPTSwarm2.1. Language Agents as Graphs2.2. Graph Definitioninput x and context information z from its predecessor nodes by applying a computational routine f 2.3. Edge Optimization  2..

agent/multi - agent 2024.08.06

MACNET - Scaling Large-Language-Model-based Multi-Agent Collaboration 논문리뷰

https://arxiv.org/pdf/2406.07155LLM의 power law와 같이 agent의 수를 늘린다고 해서 emergent capability가 생기는가?Inspired by the neural scaling law, a natural question arises: does increasing agents in multi-agent collaboration exhibit emergent capabilities? 3. Multi-Agent Collaboration Network This arrangement ensures that each node-occupied agent ai precedes its corresponding edge-occupied agent aij , and aij p..

agent/multi - agent 2024.08.05