기존의 한계
Current methodologies for assigning role descriptions to autonomous agents predominantly involve manual assignment, necessitating prior knowledge and understanding of the task. Consequently, the scalability remains ambiguous, especially in the face of diverse and intricate problem contexts.
Specifically, AGENTVERSE splits the problem-solving process into four pivotal stages as shown in Figure 1
문제해결 과정을 네개의 주요 단계로 나누는데
as follows
(1) Expert Recruitment
agent 구성을 결정 , adjustment
(2) Collaborative Decision-Making
문제해결 전략을 device하기 위해 joint discussion에 에이젼트를 engage
Horizontal Structure와
Vertical Structure 탐구
(3) Action Execution
고안된 action을 실행하기 위해 환경과 상호작용
(4) Evaluation
결과물과 desired outcomes와 비교
결과물이 unsatisfactory하다면 next iteration에 피드백이 주어짐
피드백 R can either be defined by humans (in a human-in-the-loop (Amershi et al., 2014) setting) or an agent for automatic feedback, depending on the implementation.
'agent > multi - agent' 카테고리의 다른 글
GPTSwarm 논문리뷰 (Language Agents as Optimizable Graph) (0) | 2024.08.06 |
---|---|
CAMEL: Communicative Agents for “Mind”Exploration of Large Language Model Society 논문리뷰 (0) | 2024.08.06 |
MACNET - Scaling Large-Language-Model-based Multi-Agent Collaboration 논문리뷰 (0) | 2024.08.05 |
Reflexion: Language Agents withVerbal Reinforcement Learning 논문리뷰 (0) | 2024.08.03 |
mind search 논문리뷰 (0) | 2024.08.01 |